draw the recursion tree from code

-7 rewind 7 frames pause play forward 7 frames +7

>

>

This visualization can visualize the recursion tree of a recursive algorithm.
But you can also visualize the Directed Acyclic Graph (DAG) of a DP algorithm.


Remarks: By default, we show e-Lecture Mode for first time (or non logged-in) visitor.
If you are an NUS student and a repeat visitor, please login.

🕑

This is the Recursion Tree/DAG visualization area.
Note that due to combinatorial explosion, it will be very hard to visualize Recursion Tree for large instances.
And for Recursion DAG, it will also very hard to minimize the number of edge crossings in the event of overlapping subproblems.


Pro-tip 1: Since you are not logged-in, you may be a first time visitor (or not an NUS student) who are not aware of the following keyboard shortcuts to navigate this e-Lecture mode: [PageDown]/[PageUp] to go to the next/previous slide, respectively, (and if the drop-down box is highlighted, you can also use [→ or ↓/← or ↑] to do the same),and [Esc] to toggle between this e-Lecture mode and exploration mode.

🕑

Select one of the examples, or write your own code.
Note that the visualization can run any javascript code, including malicious code, so please be careful.
Click the 'Run' button to start the visualization after you have selected or written a valid JavaScript code!


Pro-tip 2: We designed this visualization and this e-Lecture mode to look good on 1366x768 resolution or larger (typical modern laptop resolution in 2021). We recommend using Google Chrome to access VisuAlgo. Go to full screen mode (F11) to enjoy this setup. However, you can use zoom-in (Ctrl +) or zoom-out (Ctrl -) to calibrate this.

🕑

The Factorial example computes the factorial of a number N.
It is one of the simplest (tail) recursive function that can actually be rewritten into iterative version.


Pro-tip 3: Other than using the typical media UI at the bottom of the page, you can also control the animation playback using keyboard shortcuts (in Exploration Mode): Spacebar to play/pause/replay the animation, / to step the animation backwards/forwards, respectively, and -/+ to decrease/increase the animation speed, respectively.

🕑

The Fibonacci example computes the N-th Fibonacci number.
Unlike Factorial example, this time each recursive step recurses to two other smaller sub-problems. It can still be written in iterative fashion after one understands the concept of Dynamic Programming. Fibonacci recursion tree (and DAG) are frequently used to showcase the basic idea of recursion.

🕑

The Catalan example computes the N-th catalan number recursively.

🕑

The GCD example computes the Greatest Common Divisor of two numbers A and B recursively.

🕑

The N Choose K computes the binomial coefficient C(N, K).

🕑

The Range Sum Query example computes the maximum value of S(l,r), where S(l,r) = a1[l] + a1[l+1] + ... + a1[r], where 1≤l≤r≤i.

🕑

The Knapsack example solves the 0/1 Knapsack Problem: What is the maximum value that we can get, given a knapsack that can hold a maximum weight of w, where the value of the i-th item is a1[i], the weight of the i-th item is a2[i]?

🕑

The Coin Change example solves the Coin Change problem: Given a list of coin values in a1, what is the minimum number of coins needed to get the value v?

🕑

The Longest Increasing Subsequence example solves the Longest Increasing Subsequence problem: Given an array a1, how long is the Longest Increasing Subsequnce of the array?

🕑

The Traveling Salesman example solves the Traveling Salesman Problem on small graph: How long is the shortest path that goes from city 0, passes through every city once, and goes back again to 0? The distance between city i and city j is denoted by a1[i][j].

🕑

The Matching problem computes the maximum number of matching on a small graph, which is given in the adjacency matrix a1.


You have reached the last slide. Return to 'Exploration Mode' to start exploring!

Note that if you notice any bug in this visualization or if you want to request for a new visualization feature, do not hesitate to drop an email to the project leader: Dr Steven Halim via his email address: stevenhalim at gmail dot com.

🕑

Please rotate your device to landscape mode for a better experience

Please make the window wider for a better experience

>

About

VisuAlgo was conceptualised in 2011 by Dr Steven Halim as a tool to help his students better understand data structures and algorithms, by allowing them to learn the basics on their own and at their own pace.

VisuAlgo contains many advanced algorithms that are discussed in Dr Steven Halim's book ('Competitive Programming', co-authored with his brother Dr Felix Halim and his friend Dr Suhendry Effendy) and beyond. Today, a few of these advanced algorithms visualization/animation can only be found in VisuAlgo.

Though specifically designed for National University of Singapore (NUS) students taking various data structure and algorithm classes (e.g., CS1010/equivalent, CS2040/equivalent, CS3230, CS3233, and CS4234), as advocators of online learning, we hope that curious minds around the world will find these visualizations useful too.

VisuAlgo is not designed to work well on small touch screens (e.g., smartphones) from the outset due to the need to cater for many complex algorithm visualizations that require lots of pixels and click-and-drag gestures for interaction. The minimum screen resolution for a respectable user experience is 1024x768 and only the landing page is relatively mobile-friendly. However, we are currently experimenting with a mobile (lite) version of VisuAlgo to be ready by April 2022.

VisuAlgo is an ongoing project and more complex visualizations are still being developed.

The most exciting development is the automated question generator and verifier (the online quiz system) that allows students to test their knowledge of basic data structures and algorithms. The questions are randomly generated via some rules and students' answers are instantly and automatically graded upon submission to our grading server. This online quiz system, when it is adopted by more CS instructors worldwide, should technically eliminate manual basic data structure and algorithm questions from typical Computer Science examinations in many Universities. By setting a small (but non-zero) weightage on passing the online quiz, a CS instructor can (significantly) increase his/her students mastery on these basic questions as the students have virtually infinite number of training questions that can be verified instantly before they take the online quiz. The training mode currently contains questions for 12 visualization modules. We will soon add the remaining 12 visualization modules so that every visualization module in VisuAlgo have online quiz component.

We have translated VisuAlgo pages into three main languages: English, Chinese, and Indonesian. Currently, we have also written public notes about VisuAlgo in various languages:

id

,

kr

,

vn

,

th

.

Team

Project Leader & Advisor (Jul 2011-present)
Dr Steven Halim, Senior Lecturer, School of Computing (SoC), National University of Singapore (NUS)
Dr Felix Halim, Senior Software Engineer, Google (Mountain View)

Undergraduate Student Researchers 1 (Jul 2011-Apr 2012)
Koh Zi Chun, Victor Loh Bo Huai

Final Year Project/UROP students 1 (Jul 2012-Dec 2013)
Phan Thi Quynh Trang, Peter Phandi, Albert Millardo Tjindradinata, Nguyen Hoang Duy

Final Year Project/UROP students 2 (Jun 2013-Apr 2014)
Rose Marie Tan Zhao Yun, Ivan Reinaldo

Undergraduate Student Researchers 2 (May 2014-Jul 2014)
Jonathan Irvin Gunawan, Nathan Azaria, Ian Leow Tze Wei, Nguyen Viet Dung, Nguyen Khac Tung, Steven Kester Yuwono, Cao Shengze, Mohan Jishnu

Final Year Project/UROP students 3 (Jun 2014-Apr 2015)
Erin Teo Yi Ling, Wang Zi

Final Year Project/UROP students 4 (Jun 2016-Dec 2017)
Truong Ngoc Khanh, John Kevin Tjahjadi, Gabriella Michelle, Muhammad Rais Fathin Mudzakir

Final Year Project/UROP students 5 (Aug 2021-Dec 2022)
Liu Guangyuan, Manas Vegi, Sha Long, Vuong Hoang Long

Final Year Project/UROP students 6 (Aug 2022-Apr 2023)
Lim Dewen Aloysius, Ting Xiao

List of translators who have contributed ≥100 translations can be found at statistics page.

Acknowledgements
This project is made possible by the generous Teaching Enhancement Grant from NUS Centre for Development of Teaching and Learning (CDTL).

Terms of use

VisuAlgo is free of charge for Computer Science community on earth. If you like VisuAlgo, the only "payment" that we ask of you is for you to tell the existence of VisuAlgo to other Computer Science students/instructors that you know =) via Facebook/Twitter/Instagram/TikTok posts, course webpages, blog reviews, emails, etc.

If you are a data structure and algorithm student/instructor, you are allowed to use this website directly for your classes. If you take screen shots (videos) from this website, you can use the screen shots (videos) elsewhere as long as you cite the URL of this website (https://visualgo.net) and/or list of publications below as reference. However, you are NOT allowed to download VisuAlgo (client-side) files and host it on your own website as it is plagiarism. As of now, we do NOT allow other people to fork this project and create variants of VisuAlgo. Using the offline copy of (client-side) VisuAlgo for your personal usage is fine.

Note that VisuAlgo's online quiz component is by nature has heavy server-side component and there is no easy way to save the server-side scripts and databases locally. Currently, the general public can only use the 'training mode' to access these online quiz system. Currently the 'test mode' is a more controlled environment for using these randomly generated questions and automatic verification forreal examinations in NUS.

List of Publications

This work has been presented briefly at the CLI Workshop at the ICPC World Finals 2012 (Poland, Warsaw) and at the IOI Conference at IOI 2012 (Sirmione-Montichiari, Italy). You can click this link to read our 2012 paper about this system (it was not yet called VisuAlgo back in 2012) and this link for the short update in 2015 (to link VisuAlgo name with the previous project).

This work is done mostly by my past students.

Bug Reports or Request for New Features

VisuAlgo is not a finished project. Dr Steven Halim is still actively improving VisuAlgo. If you are using VisuAlgo and spot a bug in any of our visualization page/online quiz tool or if you want to request for new features, please contact Dr Steven Halim. His contact is the concatenation of his name and add gmail dot com.

Privacy Policy

Version 1.1 (Updated Fri, 14 Jan 2022).

Disclosure to all visitors: We currently use Google Analytics to get an overview understanding of our site visitors. We now give option for user to Accept or Reject this tracker.

Since Wed, 22 Dec 2021, only National University of Singapore (NUS) staffs/students and approved CS lecturers outside of NUS who have written a request to Steven can login to VisuAlgo, anyone else in the world will have to use VisuAlgo as an anonymous user that is not really trackable other than what are tracked by Google Analytics.

For NUS students enrolled in modules that uses VisuAlgo: By using a VisuAlgo account (a tuple of NUS official email address, NUS official student name as in the class roster, and a password that is encrypted on the server side — no other personal data is stored), you are giving a consent for your module lecturer to keep track of your e-lecture slides reading and online quiz training progresses that is needed to run the module smoothly. Your VisuAlgo account will also be needed for taking NUS official VisuAlgo Online Quizzes and thus passing your account credentials to another person to do the Online Quiz on your behalf constitutes an academic offense. Your user account will be purged after the conclusion of the module unless you choose to keep your account (OPT-IN). Access to the full VisuAlgo database (with encrypted passwords) is limited to Steven himself.

For other NUS students, you can self-register a VisuAlgo account by yourself (OPT-IN).

For other CS lecturers worldwide who have written to Steven, a VisuAlgo account (your (non-NUS) email address, you can use any display name, and encrypted password) is needed to distinguish your online credential versus the rest of the world. Your account will be tracked similarly as a normal NUS student account above but it will have CS lecturer specific features, namely the ability to see the hidden slides that contain (interesting) answers to the questions presented in the preceding slides before the hidden slides. You can also access Hard setting of the VisuAlgo Online Quizzes. You can freely use the material to enhance your data structures and algorithm classes. Note that there can be other CS lecturer specific features in the future.

For anyone with VisuAlgo account, you can remove your own account by yourself should you wish to no longer be associated with VisuAlgo tool.

clarkhosly1948.blogspot.com

Source: https://visualgo.net/en/recursion

0 Response to "draw the recursion tree from code"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel